On the Laplacian coefficients of tricyclic graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Laplacian Spread of Tricyclic Graphs

The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In this paper, we investigate Laplacian spread of graphs, and prove that there exist exactly five types of tricyclic graphs with maximum Laplacian spread among all tricyclic graphs of fixed order.

متن کامل

On the Laplacian coefficients of bicyclic graphs

In this paper, we investigate how the Laplacian coefficients changed after some graph transformations. So, I express some results about Laplacian coefficients ordering of graphs, focusing our attention to the bicyclic graphs. Finally, as an application of these results, we discuss the ordering of graphs based on their Laplacian like energy.

متن کامل

On the Laplacian Coefficients of Acyclic Graphs

Let G be a graph of order n and let Λ(G, λ) = ∑n k=0(−1)ckλ be the characteristic polynomial of its Laplacian matrix. Zhou and Gutman recently proved that among all trees of order n, the kth coefficient ck is largest when the tree is a path, and is smallest for stars. A new proof and a strengthening of this result is provided. A relation to the Wiener index is discussed.

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

On the Laplacian Coefficients and Laplacian-Like Energy of Unicyclic Graphs with Vertices and Pendent Vertices

Copyright q 2012 X. Pai and S. Liu. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Let Φ G, λ det λIn − L G ∑n k 0 −1 ck G λn−k be the characteristic polynomial of the Laplacian matrix of a graph G of order n. In this paper, we g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Analysis and Applications

سال: 2013

ISSN: 0022-247X

DOI: 10.1016/j.jmaa.2013.03.059